Abstract

The fast and accurate detection of disease-related biomarkers and potentially harmful analytes in different matrices is one of the main challenges in the life sciences. In order to achieve high signal-to-background ratios with frequently used photoluminescence techniques, luminescent reporters are required that are either excitable in the first diagnostic window or reveal luminescence lifetimes exceeding that of autofluorescent matrix components. Here, we demonstrate a reporter concept relying on broad band emissive ternary quantum dots (QDs) with luminescence lifetimes of a few hundred nanoseconds utilized for prolongating the lifetimes of organic or inorganic emitters with lifetimes in the order of a very few 10 ns or less through fluorescence resonant energy transfer. Using spectrally resolved and time-resolved measurements of the system optical response we demonstrate the potential of lifetime multiplexing with such systems exemplarily for AgInS2/ZnS and CdSe/ZnS QDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.