Abstract

Conformational transitions in a 4-way DNA junction when titrated with ionic solutions are studied using time-resolved fluorescence resonance energy transfer. Parameters characterising the transition in terms of critical ion concentration (c1/2) and the Hill coefficient for ion binding are obtained by fitting a simple two-state model using steady-state spectra. Data obtained from a fluorescence lifetime plate reader and analysed by fitting a single exponential to donor fluorescence lifetime decays are shown to be in good agreement with the parameters obtained from steady-state measurements. Fluorescence lifetimes, however, offer advantages, particularly in being independent of fluorophore concentration, output intensity, inhomogeneity in the excitation source and output wavelength. We demonstrate preliminary FRET-FLIM images of DNA junction solutions obtained using a picosecond gated CCD which are in agreement with results from a fluorescence lifetime plate reader. The results suggest that time-resolved FRET-FLIM is sensitive to subtle structural changes and may be useful in assays based on 4-way DNA junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.