Abstract

Time-resolved fluorescence spectra of chromophoric dissolved organic matter (CDOM) from different sources were acquired using UV (280 and 375 nm) and visible light (440 and 640 nm) excitation to probe the structural basis of the emission properties of CDOM. Emission decays were faster at the blue and red edges, particularly at the red edge, relative to those acquired from 480 to 550 nm. Based on the lifetime distribution and multiexponential analysis of the emission decays recorded at different time resolution, current findings demonstrate that the components recovered based on a superposition model have no defined physical meaning. A substantial increase in steady-state fluorescence intensity and only small changes (<30%) of amplitude-weighted average lifetime caused by sodium borohydride reduction suggest that intramolecular fluorescence quenching occurs mainly through formation of ground state charge-transfer interactions. Short-lived species (lifetime < 100 ps) dominate the emission decays over wavelengths from 400 to 800 nm, particularly under excitation at long wavelengths (440 and 640 nm). Compared to locally excited (LE) states, the contribution of charge-transfer excited (ECT) states and other short-lived species to the steady-state emission is small because of their very rapid nonradiative relaxation. This study suggests that a careful choice of observation wavelength is needed to distinguish LE states from ECT states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call