Abstract
Nanosecond time-resolved electron paramagnetic resonance (TREPR) spectroscopy has been utilized at T = 77 K to characterize alkyl side-chain effects on geometries and on the electronic couplings (VCR) of transient charge-separated (CS) states in the photoactive layers fabricated by the spin-coating of mixed solutions of regioregular polyalkylthiophenes (RR-P3AT) and [6,6]-C61-butyric acid methyl ester (PCBM). By increasing the alkyl side-chain number from 6 to 12 in P3AT, a highly distant and long-lived CS state has been obtained. This result is explained by a coupling of the hole dissociation to the polymer librations by the side-chains. From an exponential decay of VCR with respect to the CS distance, the attenuation factor (βe) has been determined to be βe = 0.2 Å(-1). Such a long-range tunneling feature is explained by the generations of the shallowly trapped, delocalized electron-hole pairs by the dissociation of the hole toward π-stacking directions at the organic photovoltaic interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.