Abstract

The photochemical reactions of vitamin K (VK) with antioxidant vitamins (vitamin E (VE) and vitamin C (VC)) in aqueous hexadecyltrimethylammonium chloride (CTAC), sodium dodecyl sulfate (SDS), and Triton X-100 micelle systems, and in an aerosol OT (AOT) reversed micelle system were investigated by a time-resolved EPR (TR-EPR). The photolysis of VK with VE in the aqueous micelle solutions gave the TR-EPR spectra having strong intensity and net emissive polarization, suggesting that the excited triplet state of VK ( 3VK *) was rapidly quenched by VE coexisting inside the micelle. On the other hand, the photolysis of VK with VC in the aqueous SDS and CTAC micelle systems gave the spectra having weak intensity, showing that the reaction between 3VK * and VC was inefficient in these micelle systems, probably because 3VK * scarcely diffused out from the micelle. The photolysis of VK with VC in the AOT reversed micelle solution gave the spin-correlated radical pair CIDEP spectrum. The result suggests that the long-lived radical pair was generated from the reaction between 3VK * and VC in the water/oil interface region of the AOT micelle, although one of the reactants dissolved in the oil phase and another did in the separated water phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call