Abstract

Pulsed inductive argon plasma in an 80-J, 15-kV, 490-kHz theta pinch is interrogated using spectroscopic methods. Time-resolved electron temperature is obtained by coupling line intensity ratios with steady-state corona and collisional-radiative (CR) models. Neutral excited state argon transitions from the 2p to 1s subshells were utilized. The backfill pressures of 50 and 100 mtorr are of primary focus. Time-resolved electron temperature estimates are presented ranging from 1 to 11.1 eV for the corona model up to an excess of 80 eV for the CR model. Near-IR spectral emission is seen to increase rapidly near the first zero crossing of the oscillating discharge current while electron temperature increase lags by roughly one full discharge cycle later near the third zero crossing. An analysis of long exposures provides an account of substantial second-order diffracted spectra. Weak spectral signal quality for the short exposures of 0.25-μs yielded time-resolved spectral intensity trend lines of a low accuracy with an average percent difference of 69% between raw data and trend lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.