Abstract

Electron transfer plays a key role in many biological systems, including core complexes of photosynthesis and respiration. As this involves unpaired electron spins, electron paramagnetic resonance (EPR) is the method of choice to investigate such processes. Systems that show photo-induced charge separation and electron transfer are of particular interest, as here the processes can easily be synchronised to the experiment and therefore followed directly over its time course. One particular class of proteins, the cryptochromes, showing charge separation and in turn spin-correlated radical pairs upon excitation with blue light, have been investigated by time-resolved EPR spectroscopy in great detail and the results obtained so far are summarised in this contribution. Highlights include the first observation of spin-correlated radical pairs in these proteins, a fact with great impact on the proposed role as key part of a magnetic compass of migratory birds, as well as the assignment of the radical-pair partners and the unravelling of alternative and unexpected electron transfer pathways in these proteins, giving new insights into aspects of biological electron transfer itself.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call