Abstract

Photo-excited structural changes of the light-driven proton pump bacteriorhodopsin were monitored using double-site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy. The inter-spin distances between nitroxides attached at residue positions 100 and 226, 101 and 160, and 101 and 168 were determined for the BR initial state and the trapped M photo-intermediate. Distance changes that occur during the photocycle were followed with millisecond time resolution under physiological conditions at 293 K. The kinetic analysis of the EPR data and comparison with the absorbance changes in the visible spectrum reveal an outward movement of helix F during the late M intermediate and a subsequent approach of helix G toward the proton channel. The displacements of the cytoplasmic moieties of these helices amount to 0.1–0.2 nm. We propose that the resulting opening of the proton channel decreases the pK of the proton donor D96 and facilitates proton transfer to the Schiff base during the M-to-N transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.