Abstract

Melanin, a ubiquitous, heterogeneous biological polymer composed of many different monomers, contains a population of stationary, intrinsic semiquinone-like radicals. Additional extrinsic semiquinone-like radicals are reversibly photogenerated with visible or UV irradiation. The free radical chemistry of melanin is complex and not well characterized, especially the photochemistry of melanin in the presence of oxygen. To determine directly how melanin reacts in the presence of oxygen, time-resolved electron paramagnetic resonance (TREPR) spectroscopy was used to examine melanin free radical chemistry in human retinal pigment epithelium (RPE) cells under aerobic and anaerobic conditions. A TREPR difference spectrum was used to explore the nature of melanin chemistry in the presence of oxygen. The position and symmetrical line shape of the TREPR three-dimensional difference spectrum shows that when reactive oxygen species (ROS) are scavenged, only one of the two or more chemically different melanin free radical species participates in ROS scavenging. This protective melanin radical species exists in both the extrinsic and intrinsic populations of melanin free radicals, allowing melanin to protect the RPE from toxic species in both the light and dark.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.