Abstract

Chirality is widespread in nature, playing a fundamental role in biochemical processes and in the origin of life itself. The observation of dynamics in chiral molecules is crucial for the understanding and control of the chiral activity of photoexcited states. One of the most promising techniques for the study of photoexcited chiral systems is time-resolved photoelectron circular dichroism (TR-PECD), which offers an intense and sensitive probe for vibronic and geometric molecular structure as well as electronic structures, and their evolution on a femtosecond timescale. However, the nonlocal character of the PECD effect, which is imprinted during the electron scattering off the molecule, makes the interpretation of TR-PECD experiments challenging. In this respect, core photoionization is known to allow site and chemical sensitivity to photelectron spectroscopy. Here we demonstrate that TR-PECD utilizing core-level photoemission enables probing the chiral electronic structure and its relaxation dynamics with atomic site sensitivity. Following UV pumped excitation to a 3s Rydberg state, fenchone enantiomers (C10H16O) were probed on a femtosecond scale using circularly polarized soft x-ray light pulses provided by the free-electron laser FERMI. C 1s binding energy shifts caused by the redistribution of valence electron density in this 3s-valence-Rydberg excitation allowed us to measure transient PECD chiral responses with an enhanced C atom site selectivity compared to that achievable in the ground state molecule. This chemical-specific, site-specific, and enantiosensitive observation of the electronic structure of a transiently photoexcited chiral molecule is expected to pave the way toward chiral femtochemistry probed by core-level photoemission.Received 2 March 2022Revised 27 September 2022Accepted 2 February 2023DOI:https://doi.org/10.1103/PhysRevX.13.011044Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasChiralityElectronic structure of atoms & moleculesPhysical SystemsMoleculesTechniquesPhotoionizationUltrafast femtosecond pump probeX-ray photoelectron spectroscopyAtomic, Molecular & Optical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.