Abstract

We present real-time detection measurements of electron tunneling in a graphene quantum dot. By counting single electron charging events on the dot, the tunneling process in a graphene constriction and the role of localized states are studied in detail. In the regime of low charge detector bias we see only a single time-dependent process in the tunneling rate which can be modeled using a Fermi-broadened energy distribution of the carriers in the lead. We find a non-monotonic gate dependence of the tunneling coupling attributed to the formation of localized states in the constriction. Increasing the detector bias above 2 mV results in an increase of the dot-lead transition rate related to back-action of the charge detector current on the dot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.