Abstract
The electronic structure and dynamics of 2D transition metal dichalcogenide (TMD) monolayers provide important underpinnings both for understanding the many-body physics of electronic quasi-particles and for applications in advanced optoelectronic devices. However, extensive experimental investigations of semiconducting monolayer TMDs have yielded inconsistent results for a key parameter, the quasi-particle band gap (QBG), even for measurements carried out on the same layer and substrate combination. Here, we employ sensitive time- and angle-resolved photoelectron spectroscopy (trARPES) for a high-quality large-area MoS2 monolayer to capture its momentum-resolved equilibrium and excited-state electronic structure in the weak-excitation limit. For monolayer MoS2 on graphite, we obtain QBG values of ≈2.10 eV at 80 K and of ≈2.03 eV at 300 K, results well-corroborated by the scanning tunneling spectroscopy (STS) measurements on the same material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.