Abstract

The turbulent mixing flow characteristics of an intermittent diesel spray were investigated. A 5-hole diesel nozzle (dn=0.32mm) with a 2-spring nozzle holder, which is widely used in heavy-duty diesel engines, was tested. Time-resolved analysis of the turbulent mixing flow characteristics of the spray, injected intermittently into the still ambient air, was made under room temperature by using a 2-D PDPA system. The mean and the fluctuation velocities of the spray were measured. The axial velocity distribution shows similar to that of the free air jets at the downstream of the spray, and the distribution well coincides with the result proposed by Hinze at R/b<1.5. The turbulent intensity of the axial velocity component is high near the spray axis, and it decreases gradually with the increase in the radial distance. The turbulent shear stress increases with proceeding to the trailing edge as well as the downstream of the spray. The maximum value of the turbulent shear stress is observed near R/b≈1.0, regardless of the evolution time. The turbulent shear stress in the central parts of the spray is lower than that of the continuous free air jets, whereas that in the trailing edge is considerably higher.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.