Abstract

This paper addresses the challenge of understanding the dynamics of the interaction between partially evaporated metal and the liquid metal melt pool in electron beam melting (EBM), an additive manufacturing technology. Few contactless, time-resolved sensing strategies have been applied in this environment. We used tunable diode-laser absorption spectroscopy (TDLAS) to measure vanadium vapor in the EBM of a Ti-6Al-4V alloy at 20 kHz. Our study includes, to our knowledge, the first-time use of a blue GaN vertical cavity surface emitting laser (VCSEL) for spectroscopy. Our results reveal a plume that is roughly symmetrical with a uniform temperature. Moreover, we believe this work presents the first application of TDLAS for time-resolved thermometry of a minor alloying element in EBM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.