Abstract
The electronic excited-state behavior of photosystem II (PSII) in Mantoniella squamata, as influenced by the xanthophyll cycle and the transthylakoid pH gradient (delta pH), was examined in vivo. Mantoniella is distinguished from other photosynthetic organisms by two main features namely (1) a unique light-harvesting complex that serves both photosystems I (PSI) and II (PSII); and (2) a violaxanthin (V) cycle that undergoes only one de-epoxidation step in excess light to accumulate the monoepoxide antheraxanthin (A) as opposed to the epoxide-free zeaxanthin (Z). The cells were treated first with high light to induce the delta pH and A accumulation, followed by herbicide-induced closure of PSII traps and a chilling treatment, to sustain and stabilize the delta pH and nigericin-sensitive fluorescence level in the dark. De-epoxidation was controlled with subsaturating concentrations of dithiothreitol (DTT) and was 5-10 times more sensitive to DTT than higher plant thylakoids. The PSII energy dissipation involved two steps: (1) the pH activation of the xanthophyll binding site that was associated with a narrowing and slight attenuation of the main 2 ns (ns = 10(-9) s) fluorescence lifetime distribution; and (2) the concentration-dependent binding of A to the activated binding site yielding a second distribution centered around 0.9 ns. Consistent with the model of Gilmore et al. (1998) (Biochemistry 37, 13,582-13,593), the fractional intensity of the 0.9 ns component depended almost entirely on the A concentration and correlated linearly with the decrease of the steady-state chlorophyll alpha fluorescence intensity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.