Abstract
A new family of Monte Carlo schemes is introduced for the numerical solution of the Boltzmann equation of rarefied gas dynamics. The schemes are inspired by the Wild sum expansion of the solution of the Boltzmann equation for Maxwellian molecules and consist of a novel time discretization of the equation. In particular, high order terms in the expansion are replaced by the equilibrium Maxwellian distribution. The two main features of the schemes are high order accuracy in time and asymptotic preservation. The first property allows to recover accurate solutions with time steps larger than those required by direct simulation Monte Carlo (DSMC), while the latter guarantees that for the vanishing Knudsen number, the numerical solution relaxes to the local Maxwellian. Conservation of mass, momentum, and energy are preserved by the scheme. Numerical results on several space homogeneous problems show the improvement of the new schemes over standard DSMC. Applications to a one-dimensional shock wave problem are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.