Abstract

In their recent study 'Changes in appetite related gut hormones in intensive care unit patients: a pilot cohort study' Nematy and colleagues further elucidated intensive care unit (ICU) patients' poor nutritional status. They reported high levels of peptide YY (PYY) and low levels of ghrelin in fasting plasma samples from ICU patients compared with healthy, nonhospitalized controls [1]. While intriguing, this gives only a mere snapshot of PYY/ghrelin physiology in the ICU patient because PYY/ghrelin levels were measured only once per day. The pattern of plasma ghrelin levels during a 24-hour period in human subjects was previously characterized, in which samples were taken at intervals of 30–60 min throughout the day. Results revealed a preprandial rise and a postprandial decline in ghrelin, characteristic of a natural rhythm related to food intake [2]. PYY secretion was conversely defined as involving a low fasting level followed by a postprandial rise, which peaked 1 hour after food ingestion and was influenced by meal type and meal size [3]. The implications of measuring these gut peptides in fasting individuals only once per day in the morning is an incomplete representation of the physiology of these hormones in the complicated ICU patient. Observing the hormone levels at multiple time points could result in three possible scenarios and could lead to different treatment options. The first hypothesis is a steady baseline state with no rhythmic phenomenon associated with food intake. This possibility, while unlikely, must be considered, since some semblance of normal physiology, albeit inadequate, is usually preserved in the ICU patient. A second possibility is a rhythmic response in which peaks and troughs reach the same levels as in control subjects while still exhibiting a higher/lower baseline state. This is representative of a suboptimal physiologic response. A rhythmic response may still be present but sufficient hormone levels are not reached, resulting in a less potent stimulus leading to a depressed response. This is the most probable case as it is possible that the hormone response in critically ill patients may be inadequate. This could therefore hold true for PYY/ghrelin responses, in which normal stimuli do not enhance the hormone response. Finally, these hormones could have baselines that are elevated or depressed relative to controls and could also reach peaks/troughs that are still higher/lower than controls. This would reflect the patients' retention of a normal physiologic rhythm in response to meals even though baseline levels are altered. It is suspected that this final scenario would not be the case as this would yield a normal response to feeding, and possibly a normal nutritional state. It is therefore essential that preprandial and postprandial measurements be taken to better illustrate this physiology. This would then lend credence to the possibility that the rhythmic release of PYY/ghrelin is more important than baseline levels. The physiology of ICU patients is a complicated puzzle, one confounded by innumerable variables. To look at a single time point for gut peptide characterization – let alone any hormone – is insufficient and perhaps misleading. With the expansion of time points and sample numbers, consideration of the three aforementioned hypotheses is warranted. It is believed that the new data from these suggestions will help to further unlock the mystery that is the nutritional status of the ICU patient.

Highlights

  • Louisiana State University Health, Sciences Center in New Orleans, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA

  • See related research by Nematy et al in issue 10.1 [http://ccforum.com/content/10/1/R10]. In their recent study ‘Changes in appetite related gut hormones in intensive care unit patients: a pilot cohort study’ Nematy and colleagues further elucidated intensive care unit (ICU) patients’ poor nutritional status. They reported high levels of peptide YY (PYY) and low levels of ghrelin in fasting plasma samples from ICU patients compared with healthy, nonhospitalized controls [1]

  • A rhythmic response may still be present but sufficient hormone levels are not reached, resulting in a less potent stimulus leading to a depressed response

Read more

Summary

Introduction

Louisiana State University Health, Sciences Center in New Orleans, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA. In their recent study ‘Changes in appetite related gut hormones in intensive care unit patients: a pilot cohort study’ Nematy and colleagues further elucidated intensive care unit (ICU) patients’ poor nutritional status. They reported high levels of peptide YY (PYY) and low levels of ghrelin in fasting plasma samples from ICU patients compared with healthy, nonhospitalized controls [1].

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.