Abstract

Episodic memory is a system that receives and stores information about temporally dated episodes and their interrelations. Our study aimed to investigate the relevance of episodic memory to time perception, with a specific focus on simultaneity/order judgment. Experiment 1 employed the simultaneity judgment task to discern differences in time perception between patients with mild cognitive impairment or dementia, and age-matched normals. A mathematical analysis capable of estimating subjects' time processing was utilized to identify the sensory and decisional components of temporal order and simultaneity judgment. Experiment 2 examined how differences in temporal perception relate to performance in temporal order memory, in which time delays play a critical role. The temporal decision windows for both temporal order and simultaneity judgments exhibited marginal differences between patients with episodic memory impairment, and their healthy counterparts (p = 0.15, t(22) = 1.34). These temporal decision windows may be linked to the temporal separation of events in episodic memory (Pearson's ρ = -0.53, p = 0.05). Based on our findings, the frequency of visual events accumulated and encoded in the working memory system in the patients' and normal group appears to be approximately (5.7 and 11.2) Hz, respectively. According to the internal clock model, a lower frequency of event pulses tends to result in underestimation of event duration, which phenomenon might be linked to the observed time distortions in patients with dementia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call