Abstract
In this paper, a method is proposed for the minimum-time travel of a fixed-wing aircraft along a prescribed geometric path. The method checks the feasibility of the path, namely, whether it is possible for the aircraft to travel along the path without violating the state or control constraints. If the path is feasible, the method subsequently finds a semi-analytical solution of the speed profile that minimizes the travel time along the path. The optimal speed profile is then used to time parameterize the path and generate the state trajectory along with the control histories via inverse dynamics. Two algorithms for the time-optimal parameterization are proposed. Numerical examples are presented to demonstrate the validity, numerical accuracy, and optimality of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.