Abstract
Let a variable, closed, bounded, and convex subset ofX, a separable and reflexive Banach space, be denoted byG(t). Suppose thatG(t) varies upper-semicontinuously with respect to inclusion ast varies in [0,T]. We say that the strongly measurable mapu from [0,T] toX is an admissible control if, for almost everyt in [0,T],u(t) is an element ofU, a closed, bounded, and convex subset ofX, and ∥u∥ p ⩽M1p, where p>1 andM>0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.