Abstract

Internet-of-Things (IoT) applications for real-time control gradually increase and become computationally demanding. To provide better quality-of-service (QoS) in random access (RA) system based on slotted ALOHA (S-ALOHA), this work proposes a novel S-ALOHA system with cross-slot successive interference cancellation (SIC). To facilitate SIC, we design each slot with several time offsets (TOs) and one packet transmission time, where the length of overall TOs is a fraction of a packet transmission time. Users (re)transmit at the boundary of a TO randomly selected. This enables the base station (BS) to distinguish who makes the first and last transmissions in a collision slot and ask immediate retransmissions from them in the subsequent one or two slots. With these retransmitted packets, the BS performs SIC for the previously collided packets. We analyze the system throughput and the distribution of RA delay. The results show that the proposed system can achieve throughput from 0.5 (packets per packet transmission time) at minimum to 0.856 at maximum, depending on the number of TOs and the length of TO. In addition, to run this system stably, we propose a Bayesian-optimized backoff algorithm that enables users to use throughput-optimal (re)transmission probability. It is demonstrated that the proposed backoff algorithms can achieve the throughput close to genie-aided (GA) system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call