Abstract

Continuous improvements have been made in the way to prescribe, record and report dose distributions since the therapeutic use of ionizing radiations. The international commission for radiation units and measurement (ICRU) has provided a common language for physicians and physicists to plan and evaluate their treatments. The PTV concept has been used for more than two decades but is becoming obsolete as the CTV-to-PTV margin creates a static dose cloud that does not properly recapitulate all planning vs. delivery uncertainties. The robust optimization concept has recently emerged to overcome the limitations of the PTV concept. This concept is integrated in the inverse planning process and minimizes deviations to planned dose distribution through integration of uncertainties in the planning objectives. It appears critical to account for the uncertainties that are specific to protons and should be accounted for to better exploit the clinical potential of proton therapy. It may also improve treatment quality particularly in hypofractionated photon plans of mobile tumors and more widely to photon radiotherapy. However, in contrast to the PTV concept, a posteriori evaluation of plan quality, called robust evaluation, using error-based scenarios is still warranted. Robust optimization metrics are warranted. These metrics are necessary to compare PTV-based photon and robustly optimized proton plans in general and in model-based NTCP approaches. Assessment of computational demand and approximations of robust optimization algorithms along with metrics to evaluate plan quality are needed but a step further to better prescribe radiotherapy may has been achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.