Abstract

Gallium Nitride (GaN) thin films were successfully grown by electron cyclotron resonance molecular beam epitaxy (ECR-MBE), gas source MBE (GSMBE), and chemical beam epitaxy (CBE). Time of flight mass spectroscopy of recoiled ions (TOF-MSRI) and reflection high energy electron diffraction (RHEED) were used in-situ to determine the surface composition, crystalline structure, and growth mode of GaN thin films deposited by the three MBE methods. The substrate nitridation and the buffer layers were monitored and optimized by TOF-MSRI and RHEED. For GSMBE, the gallium to nitrogen ratio is found to correlate well with ex-situ optical properties. In the case of CBE, carbon incorporation determines the surface morphology, crystalline quality and optical activity of the epilayers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.