Abstract
The masses of charged atoms and molecules were first investigated by laterally dispersive sector field mass analyzers, which early on already achieved high mass resolving powers. Equally, high mass resolving powers were achieved by time-of-flight mass analyzers during the last decades. These measurements became possible when fast and precise electronic circuitries became available. Such techniques have been developed and used extensively for the mass analysis of short-lived nuclei, whose mass values reveal insight in processes that describe the formation of elements in star explosions. Precise mass determinations of short-lived ions have been performed for energetic ions in large accelerator storage rings as well as for low-energy ions in time-of-flight mass spectrographs with long flight paths. Similarly, precise mass measurements can also be performed for molecular ions that help to reveal the structure of molecules. In case of very high mass resolving powers, the mass determination of molecular ions can be so high that the measured ion mass directly reveals the molecule’s sum formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.