Abstract
Due to the light scattered by atmospheric aerosols, the amplitude image contrast is degraded and the depth measurement is greatly distorted for time-of-flight (ToF) imaging in fog. The problem limits ToF imaging to be applied in outdoor settings, such as autonomous driving. To improve the quality of the images captured by ToF cameras, we propose a polarization phasor imaging method for image recovery in foggy scenes. In this paper, optical polarimetric defogging is introduced into ToF phasor imaging, and the degree of polarization phasor is proposed to estimate the scattering component. A polarization phasor imaging model is established, aiming at separating the target component from the signal received by ToF cameras to recover the amplitude and depth information. The effectiveness of this method is confirmed by several experiments with artificial fog, and the experimental results demonstrate that the proposed method significantly improves the image quality, with robustness in different thicknesses of fog.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.