Abstract

ABSTRACTThe electronic properties of diamond, e.g. a high band-gap and high carrier mobilities, together with material properties such as a very high thermal conductivity, chemical inertness and a high radiation resistance makes diamond a unique material for many extreme electronic applications out of reach for silicon devices. This includes, e.g. microwave power devices, power devices and high temperature electronics. It is important to have an effective passivation of the surface of such devices since the passivation determines the ability of the device to withstand high surface electric fields. In addition, the passivation is used to control the surface charge which can strongly influence the electric field in the bulk of the device. It is possible to measure sample parameters such as electron and hole drift mobilities, charge carrier lifetimes or saturation velocities using Time-of-flight (ToF) method. The ToF technique has also been adapted for probing the electric field distribution and the distribution of trapped charge. In this paper we present new data from lateral ToF studies of high-purity single crystalline diamond with different surface passivations. Silicon oxide and silicon nitride are used as passivation layers in the current study. The effect of the passivation on charge transport is studied, and the results of different passivation materials are compared experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call