Abstract

We propose a model for the energy dispersion of electron precipitation associated with pulsating auroras, considering the wave‐particle interactions with propagating whistler mode waves from the equator. Since the resonant energy depends on the magnetic latitude, the pitch angle scattering of different energy electrons can occur continuously along the field line. Considering the energy‐dependent path length and the precipitation start time of the precipitating electrons, the transit time of whistler mode waves, and the frequency drift, we calculated the precipitation of electrons observed at the topside ionosphere. Note that higher energy electrons precipitate into the ionosphere of the opposite hemisphere earlier than lower energy electrons. As a result, an energy dispersion of precipitating electrons is observed at the topside ionosphere, even though the modulation of low energy electrons occurs prior to that of high energy electrons. Using the model, we conducted a time‐of‐flight (TOF) analysis of precipitating electrons observed by the REIMEI satellite, assuming an interaction with the whistler mode chorus rising tone. Our TOF analysis suggests that the modulation region of the pitch angle scattering is near the magnetic equator, whereas previous models expected that the modulation region is far from the magnetic equator. The estimated parameters, such as wave‐frequency and latitudinal distribution of the modulation region, are consistent with previous statistical studies of whistler waves at the magnetosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.