Abstract

A system of evolutionary partial differential equations (PDEs) describing the two-phase flow of immiscible fluids, such as water–gas, through porous media is studied. In this formulation, the wetting and nonwetting phases are treated to be incompressible and compressible, respectively. This treatment is indeed necessary when a compressible nonwetting phase is subjected to compression during confinement. The system of PDEs consists of an evolution equation for the wetting-phase saturation and an evolution equation for the pressure in the nonwetting phase. This system is applied to the problem of unsaturated flows to assess gas migration and two-phase flow through engineered and geological barriers for a deep repository for radioactive waste. This paper is primarily concerned with the large time behavior of solutions of this system. Under some realistic assumptions on the data, we derive estimates of the speed of propagation of the gas by water in porous media. Namely, we establish estimates of time stabilization for the water saturation to a constant limit profile. The analysis is based on the energy methods whose main idea involves deriving and studying suitable ordinary differential inequalities. We show that the time of complete displacement of a gas by water may be at most infinite or finite depending essentially on the power parameters defining the capillary pressure and the relative permeabilities. This result is then illustrated with two examples in the context of gas migration in a deep nuclear waste repository. We consider Van Genuchten’s and Brooks–Corey’s models for a two-phase water–gas system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.