Abstract

In this paper we study the construction of probability densities for time of arrival in quantum mechanics. Our treatment is based upon the facts that (i) time appears in quantum theory as an external parameter to the system, and (ii) propositions about the time of arrival appear naturally when one considers histories. The definition of time-of-arrival probabilities is straightforward in stochastic processes. The difficulties that arise in quantum theory are due to the fact that the time parameter of the Schrödinger’s equation does not naturally define a probability density at the continuum limit, but also because the procedure one follows is sensitive on the interpretation of the reduction procedure. We consider the issue in Copenhagen quantum mechanics and in history-based schemes like consistent histories. The benefit of the latter is that it allows a proper passage to the continuous limit—there are, however, problems related to the quantum Zeno effect and decoherence. We finally employ the histories-based description to construct Positive-Operator-Valued-Measures (POVMs) for the time-of-arrival, which are valid for a general Hamiltonian. These POVMs typically depend on the resolution of the measurement device; for a free particle, however, this dependence cancels in the physically relevant regime and the POVM coincides with that of Kijowski.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.