Abstract

We study time-minimum optimal control for a class of quantum two-dimensional dissipative systems whose dynamics are governed by the Lindblad equation and where control inputs acts only in the Hamiltonian. The dynamics of the control system are analyzed as a bi-linear control system on the Bloch ball after a decoupling of such dynamics into intra- and inter-unitary orbits. The (singular) control problem consists of finding a trajectory of the state variables solving a radial equation in the minimum amount of time, starting at the completely mixed state and ending at the state with the maximum achievable purity. The boundary value problem determined by the time-minimum singular optimal control problem is studied numerically. If controls are unbounded, simulations show that multiple local minimal solutions might exist. To find the unique globally minimal solution, we must repeat the algorithm for various initial conditions and find the best solution out of all of the candidates. If controls are bounded, optimal controls are given by bang-bang controls using the Pontryagin minimum principle. Using a switching map we construct optimal solutions consisting of singular arcs. If controls are bounded, the analysis of our model also implies classical analysis done previously for this problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call