Abstract

Abstract The time minimization problem with admissible control in a half-disc is considered on the group of motions of a plane. The control system under study provides a model of a car on the plane that can move forwards or rotate in place. Optimal trajectories of such a system are used to detect salient curves in image analysis. In particular, in medical image analysis such trajectories are used for tracking vessels in retinal images. The problem is of independent interest in geometric control theory: it provides a model example when the set of values of the control parameters contains zero at the boundary. The problem of controllability and existence of optimal trajectories is studied. By analysing the Hamiltonian system of the Pontryagin maximum principle the explicit form of extremal controls and trajectories is found. Optimality of the extremals is partially investigated. The structure of the optimal synthesis is described. Bibliography: 33 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.