Abstract
The time-local master equation for a driven boson system interacting with a boson environment is derived by way of a time-local Heisenberg--Langevin equation. Extension to the driven qubit fails---except for weak excitation---due to the lost linearity of the system-environment interaction. We show that a reported time-local master equation for the driven qubit is incorrect. As a corollary to our demonstration, we also uncover odd asymptotic behavior in the "repackaged" time-local dynamics of a system driven to a far-from-equilibrium steady state: the density operator becomes steady while time-dependent coefficients oscillate (with periodic singularities) forever.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.