Abstract
Matching conditions are universal ingredients that describe how fragmentation functions change when heavy-flavour thresholds are crossed during the factorisation scale evolution. They are the last missing piece for a consistent description of observables with identified final-state hadrons at next-to-next-to leading order accuracy in quantum chromodynamics. We present an analytical form of the matching condition for light-flavour to hadron fragmentation function at next-to-next-to leading order. The derivation is performed by extending the formalism employed in the extraction of the next-to leading order matching conditions to the subsequent order, making use of e+e-\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$e^+e^-$$\\end{document} annihilation cross sections. We obtain the first non-trivial heavy-quark effect in the light-quark fragmentation functions and provide results in Mellin space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.