Abstract

We review recent progress in the use of time lens-based optical Fourier transformation for advanced all-optical signal processing. A novel time lens-based complete optical Fourier transformation (OFT) technique is introduced. This complete OFT is based on two quadratic phase-modulation stages using four-wave mixing, separated by a dispersive medium, which enables time-to-frequency and frequency-to-time conversions simultaneously, thus performing an exchange between the temporal and spectral profiles of the input signal. Using the proposed complete OFT, several advanced all-optical signal processing schemes for spectrally-efficient systems and networks have been achieved, including all-optical generation, detection and format conversion of spectrally-efficient signals. The spectrally-efficient signals in this paper mainly refer to efficiently multiplexed signals with a high symbol rate per Hz, such as orthogonal frequency division multiplexing, Nyquist wavelength-division multiplexing (Nyquist-WDM), and Nyquist optical time division multiplexing (Nyquist-OTDM) signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.