Abstract

Ground-penetrating radar (GPR) is an effective tool for imaging the spatial distribution of water content. An artificial groundwater recharge test was conducted in Nagaoka City in Japan, and time-lapse crosshole GPR data were collected to monitor the infiltration process in the vadose zone. Since electromagnetic wave velocities in the vadose zone are largely controlled by variations in water content, an increase in traveltime is interpreted as an increase in saturation. In the test zone, the infiltrated water penetrated downward with an average velocity of about 2.7 m/h. A finite-difference time-domain method using two-dimensional cylindrical coordinates is applied to simulate radargrams associated with the advancing wetting front and to quantify the effects of critical refraction. Standard zero-offset profiling for which all first-arrivals are assumed to be direct waves results in an underestimation of water content in the transition zone above the wetting front. As a result, correct velocity analysis requires identification of first-arriving critically refracted waves from the traveltime profile to accurately determine a water content profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call