Abstract

Clarifying the essential succession dynamics of interspecies interactions during biofilm development is crucial for the regulation and application of biofilm-based processes. In this study, regular and time-series phylogenetic molecular ecological networkswere constructed to investigate ordinary and time-lagged interspecies interactions during biofilm development in a moving bed biofilm reactor.Positive interactions dominated both regular (89.78%) and time-series (77.04%) ecological networks, suggesting that extensive cooperative behaviors facilitated biofilm development. The pronounced directional interactions (72.52%) in the time-series network further indicated that time-lagged interspecies interactions prevailed in the biofilm development process. Specifically, the proportion of directional negative interactions was higher than that of positive interactions, implying that interspecific competition preferred to be time-lagged. The time-series network revealed that module hubs exhibited extensive time-lagged positive interactions with their neighbors, and most of them exhibited altruistic behaviors. Keystone species possessing more positive interactions were positively correlated with biofilm biomass, NO3 - -N concentrations, and the removal efficiencies of NH4 + -N and chemical oxygen demand. However, keystone species and peripherals that were negatively targeted by their neighbors showed positive correlations with the concentrations of NO2 - -N, polysaccharides, and proteins in the soluble microbial products. The data highlight that the time-series network can provide directional microbial interactions along with the biofilm development process, which would help to predict the tendency of community shifts and propose efficient strategies for the regulation of biofilm-based processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call