Abstract

Rapid global changes are altering regional hydrothermal conditions, especially in ecologically vulnerable regions such as coastal areas of China. The response of vegetation growth to extreme climates and the time lag-accumulation relationship still require further exploration. We characterize the vegetation growth status by solar-induced chlorophyll fluorescence (SIF), analyzed the vegetation dynamic in coastal areas of China from 2000 to 2019, also explored the spatiotemporal pattern of vegetation, and assessed the response of vegetation to extreme climate in term of time lag-accumulation by combines gradual analysis and abrupt analysis. The results showed that (1) Coastal areas of China were sensitive to global climate change, with extreme high temperatures and extreme precipitation increasing from 2000 to 2019, and the warming in high latitudes was greater than in low latitudes, while the increase in precipitation was concentrated in the southern regions, which are already water-rich. (2) The vegetation in coastal areas of China improved significantly, with gradual analysis showed that the vegetation improvement area accounts for 94.12% of the study area, and the abrupt analysis showed that the majority (69.78%) of the vegetation change types were "monotonic increase", with 11.77% showing "increase with negative break" and 9.48% "increases to decreases." (3) Significant lag-accumulation relationships were observed between vegetation and extreme climate in coastal areas of China, and the time-accumulation effects was stronger than time-lag effects. The accumulation time of extreme temperatures was typically less than one month, and the accumulation time of extreme precipitation was 2-3 months. These findings contribute to filling gaps in understanding the time lag-accumulation effects of extreme climates on vegetation in sensitive coastal regions. It provides a foundational basis for predicting the growth trend of coastal vegetation, environmental changes and ecosystem evolution, which is essential for a comprehensive assessment of coastal ecological security.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call