Abstract

Previous studies have shown that eye removal disrupts the circadian body temperature and activity rhythms of Japanese quail supporting the hypothesis that the eyes act as pacemakers within the quail circadian system. Furthermore, the putative ocular pacemakers are coupled to the rest of the circadian system via neural and hormonal outputs. Although the neural pathway has yet to be identified, experiments suggest that the daily rhythm of ocular melatonin synthesis and release is the hormonal output. We sought to strengthen the hypothesis that the eyes are the loci of circadian pacemakers, and that melatonin output is involved, by examining melatonin secretion in cultured quail retinas. Using an in vitro flow-through system we demonstrated that (1) isolated retinal tissue could exhibit a rhythm of melatonin release, (2) the rhythm of melatonin synthesis is directly entrainable by 24-h light–dark cycles, and (3) supplementation of the culture medium with serotonin is necessary for robust, rhythmic production of melatonin in constant darkness. These results show definitively that the eyes are the loci of a biological clock and, in light of previous studies showing the disruptive effects of blinding on the circadian system, strengthen the hypothesis that the ocular clock is a circadian pacemaker that can affect the rest of the circadian system via the cyclic synthesis and release of melatonin. The quail retina is proving to be a valuable in vitro model for investigating properties of circadian pacemakers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call