Abstract
A process management technique, called process mining, received much attention recently. Process mining can extract organizational or social structures from event logs recorded in an information system. However, when constructing process models, most process mining searches consider only the topology information among events, but do not include the time information. To overcome the drawbacks, a time-interval genetic process mining framework is proposed. First, time-intervals between events are derived for all event sequences. A discretization procedure is then developed to transform time-interval data from continues type to categorical type. Second, the genetic process mining method which is based on global search strategy is applied to generate time-interval process models. Finally, a precision measure is defined to evaluate the quality of the generated models. With the measure, managers can select the best process model among a set of candidate models without human involvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.