Abstract
High-precision time interval measurement is a fundamental technique in many advanced applications, including time and distance metrology, particle physics, and ultra-precision machining. However, many of these applications are confined by the imprecise time interval measurement of electrical signals, restricting the performance of the ultimate system to a few picoseconds, which limits ultrahigh precision applications. Here, we demonstrate an optical means for the time interval measurement of electrical signals that can successfully achieve femtosecond (fs) level precision. The setup is established using the optical frequency comb (OFC) based linear optical sampling (LOS) technique to realize timescale-stretched measurement. We achieve a measurement precision of 82 fs for a single LOS scan measurement and 3.05 fs for the 100-times average with post-processing, which is three orders of magnitude higher than the results of older electrical methods. The high-precision time interval measurement of electrical signals can substantially improve precision measurement technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.