Abstract
Dynamical low-rank approximation in the Tucker tensor format of given large time-dependent tensors and of tensor differential equations is the subject of this paper. In particular, a discrete time integration method for rank-constrained Tucker tensors is presented and analyzed. It extends the known projector-splitting integrator for dynamical low-rank approximation of matrices to Tucker tensors and is shown to inherit the same favorable properties. The integrator is based on iteratively applying the matrix projector-splitting integrator to tensor unfoldings but with inexact solution in a substep. It has the property that it reconstructs time-dependent Tucker tensors of the given rank exactly. The integrator is also shown to be robust to the presence of small singular values in the tensor unfoldings. Numerical examples with time-dependent problems from quantum physics and tensor optimization methods illustrate our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.