Abstract

Learning vector quantization (LVQ) constitutes a very popular machine learning technology with applications, for example, in biomedical data analysis, predictive maintenance/quality as well as product individualization. Albeit probabilistic LVQ variants exist, its deterministic counterparts are often preferred due to their better efficiency. The latter do not allow an immediate probabilistic interpretation of its output; hence, a rejection of classification based on confidence values is not possible. In this contribution, we investigate different schemes how to extend and integrate pairwise LVQ schemes to an overall probabilistic output, in comparison with a recent heuristic surrogate measure for the security of the classification, which is directly based on LVQ’s multi-class classification scheme. Furthermore, we propose a canonic way how to fuse these values over a given time window in case a possibly disrupted measurement is taken over a longer time interval to counter the uncertainty of a single point in time. Experimental results indicate that an explicit probabilistic treatment often yields superior results as compared to a standard deterministic LVQ method, but metric learning is able to annul this difference. Fusion over a short time period is beneficial in case of an unclear classification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call