Abstract

AbstractTime‐integral correlations are examined between the geosynchronous relativistic electron flux index Fe1.2 and 31 variables of the solar wind and magnetosphere. An “evolutionary algorithm” is used to maximize correlations. Time integrations (into the past) of the variables are found to be superior to time‐lagged variables for maximizing correlations with the radiation belt. Physical arguments are given as to why. Dominant correlations are found for the substorm‐injected electron flux at geosynchronous orbit and for the pressure of the ion plasma sheet. Different sets of variables are constructed and correlated with Fe1.2: some sets maximize the correlations, and some sets are based on purely solar wind variables. Examining known physical mechanisms that act on the radiation belt, sets of correlations are constructed (1) using magnetospheric variables that control those physical mechanisms and (2) using the solar wind variables that control those magnetospheric variables. Fe1.2‐increasing intervals are correlated separately from Fe1.2‐decreasing intervals, and the introduction of autoregression into the time‐integral correlations is explored. A great impediment to discerning physical cause and effect from the correlations is the fact that all solar wind variables are intercorrelated and carry much of the same information about the time sequence of the solar wind that drives the time sequence of the magnetosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.