Abstract

It is shown that time-independent solutions to the (2+1)-dimensional nonlinear O(3) sigma model may be placed in correspondence with surfaces of constant mean curvature in three-dimensional Euclidean space. The tools required to establish this correspondence are provided by the classical differential geometry of surfaces. A constant-mean-curvature surface induces a solution to the O(3) model through the identification of the Gauss map, or normal vector, of the surface with the field vector of the sigma model. Some explicit solutions, including the solitons and antisolitons discovered by Belavin and Polyakov, and a more general solution due to Purkait and Ray, are considered and the surfaces giving rise to them are found explicitly. It is seen, for example, that the Belavin-Polyakov solutions are induced by the Gauss maps of surfaces which are conformal to their spherical images, i.e. spheres and minimal surfaces, and that the Purkait-Ray solution corresponds to the family of constant-mean-curvature helicoids first studied by do Carmo and Dajczer in 1982. A generalization of this method to include time dependence may shed new light on the role of the Hopf invariant in this model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.