Abstract

Escalation in the use of Internet-of-Things (IoT) devices gives rise to the number of networks operating in the license-free 2.4 GHz frequency band. This prepares the ground for networks to experience interference from coexisting networks and thus performance degradation. Time Slotted Channel Hopping (TSCH), as an operational medium access mode of the IEEE 802.15.4 technology, was introduced to ensure the reliability of IoT networks when they undergo coexistence. It uses frequency hopping as a protective strategy against long-term packet losses due to interference. However, when several independent TSCH networks coexist, they are prone to interfere with one another. In extreme scenarios, coexisting TSCH networks may block links of one another for an extended duration of time, leading to application failure. In this paper, we propose a novel technique called time hopping to secure the reliability of coexisting TSCH networks. The developed technique synchronously and periodically alters the timing of nodes within a TSCH network to avoid coexisting TSCH networks from getting stuck in extreme coexistence scenarios and long-term continuous collisions. We evaluate the effectiveness of the proposed technique through extensive simulations. The results clearly show that the proposed time hopping technique substantially improves the worst-case inter-network collision ratio, with as much as 50% improvement in some tested scenarios. The implementation of the technique is very simple, with almost no communication or computation overhead for the constrained wireless nodes; it is done and tested on real nodes for proof of concept.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.