Abstract

Accurately grasping the stability characteristics of high earth-rockfill dam slopes is the key to the seismic safety evaluation of dams. In this research, the development and application of the common methods for slope stability analysis are reviewed firstly. Then, a three-dimensional dynamic time history stability analysis method is presented, and corresponding software is developed based on the sliding surface finite element stress method combined with the three-dimensional finite element dynamic response. This method makes the three-dimensional dynamic stability analysis efficient, and the effectiveness of this software is verified. Finally, the two-dimensional (2D) and three-dimensional (3D) dynamic stability analyses of a high concrete face dam are carried out, and the stability of the dam’s downstream slope under seismic load is studied. The results indicate that there are many differences between the results of the traditional 2D and 3D stability analyses. The time history of the safety factor, local safety behavior, overall shape and spatial position of the potential sliding body, and even the sliding process of failure can be captured with 3D stability analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.