Abstract
A method of time historical response analysis for large-scale structures is presented. This method is derived from a combination of the transfer influence coefficient method and the Newmark-β or Wilson-θ method, and it improves the computational efficiency and accuracy of the transient response analysis remarkably by means of several advantages of the transfer influence coefficient method. The present method is free of the numerical instabilities which often occur in using the Newmark-β or Wilson-θ method combined with the transfer matrix method or the Runge-Kutta-Gill method. An algorithm for the transient response is formulated for the three-dimensional three structure which is mainly found in pipeline systems. We regard the tree structure as a lumped mass system here. The validity of the present method compared with other methods for transient analysis is demonstrated through various numerical computations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series C
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.