Abstract

Multi-objective optimization (MOO) is an optimization involving minimization or maximization of several objective functions more than the conventional one objective optimization, which is useful in many fields. Many of the current methodologies addresses challenges and solutions that attempt to solve simultaneously several Objectives with multiple constraints subjoined to each. Often MOO are generally subjected to linear inequality, equality and or bounded constraint that prevent all objectives from being optimized at once. This paper reviews some recent articles in area of MOO and presents deep analysis of Random and Uniform Entry-Exit time of objectives. It further breaks down process into sub-process and then provide some new concepts for solving problems in MOO, which comes due to periodical objectives that do not stay for the entire duration of process lifetime, unlike permanent objectives which are optimized once for the entire process duration. A methodology based on partial optimization that optimizes each objective iteratively and weight convergence method that optimizes sub-group of objectives are given. Furthermore, another method is introduced which involve objective classification, ranking, estimation and prediction where objectives are classified based on their properties, and ranked using a given criteria and in addition estimated for an optimal weight point (pareto optimal point) if it certifies a coveted optimal weight point. Then finally predicted to find how far it deviates from the estimated optimal weight point. A Sample Mathematical Tri-Objectives and Real-world Optimization was analyzed using partial method, ranking and classification method, the result showed that an objective can be added or removed without affecting previous or existing optimal solutions. Therefore, suitable for handling time governed MOO. Although this paper presents concepts work only, it’s practical application are beyond the scope of this paper, however base on analysis and examples presented, the concept is worthy of igniting further research and application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.