Abstract

Raman spectroscopy, a non-destructive reference technique, is used in heritage science to directly identify materials like pigments, minerals, or binding media. However, depending on the material, the laser source can induce a strong fluorescence signal that may mask the Raman signal during spectral detection. This photo-induced effect can prevent the detection of a Raman peak. A pulsed Raman spectroscopy, using a time-gated detection and pulsed laser, is proven capable of rejecting the fluorescence background and working with the environmental light, which makes Raman spectroscopy more adapted for in situ applications. In this paper, we investigated how an ns pulsed laser can be an excitation source of Raman spectroscopy by focusing on different parameters of laser excitation and collection. With proper implementation, this pulsed Raman technique can be used for cultural heritage with an ns pulsed laser for the first time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call