Abstract

Aspiration reflex (AspR) represents a specific inspiratory motor behavior expressed by short, powerful inspiratory activity without subsequent active expiration and characterized by the ability to interrupt strong tonic inspiratory activity, as well as hypoxic apnea and several other functional disorders. Multiresolution analysis-based determination of spectral features arising during AspR has not yet been satisfactorily investigated. The time–frequency energy distribution of phrenic nerve electrical activity was compared during the AspR, inspiratory phase of tracheobronchial cough and quiet inspiration. Data obtained from 16 adult cats anesthetized with chloralose or pentobarbital were analyzed using a wavelet transformation, a sensitive method suitable for processing of the non-stationary respiratory output signal. Phrenic nerve energy was accumulated within lower frequency bands in AspR bursts. In AspR, higher frequencies contributed less to the total power, when compared to cough inspiration. Moreover, AspR indicated a stable time–frequency energy distribution, regardless of which of the two types of anesthesia were used. Chloralose anesthesia induced a decrease of parameters in cough and quiet inspiration related to the quantity of energy. The results indicate a specific method of information processing during generation of AspR, underlying its powerful ability to influence various severe functional disorders with potential implications for model experiments and clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call